Two enhanced differential evolution algorithms for job shop scheduling problems
نویسندگان
چکیده
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. This paper proposes two new differential evolution algorithms (DE) for solving the job shop scheduling problem (JSP) that minimises two single objective functions: makespan and total weighted tardiness. The proposed algorithms aim to enhance the efficiency of the search by dynamically balancing exploration and exploitation ability in DE and avoiding the problem of premature convergence. The first algorithm allows DE population to simultaneously perform different mutation strategies in order to extract the strengths of various strategies and compensate for the weaknesses of each individual strategy to enhance the overall performance. The second algorithm allows the whole DE population to change the search behaviour whenever the solutions do not improve. This study also introduces a modified local mutation operation embedded in the two proposed DE algorithms to promote exploitation in different areas of the search space. In addition, a local search technique, called Critical Block (CB) neighbourhood, is applied to enhance the quality of solutions. The performances of the proposed algorithms are evaluated on a set of benchmark problems and compared with results obtained from an efficient existing Particle Swarm Optimisation (PSO) algorithm. The numerical results demonstrate that the proposed DE algorithms yield promising results while using shorter computing times and fewer numbers of function evaluations. 1. Introduction Scheduling is the problem of allocating limited resources to different tasks. It plays a vital role in most manufacturing industries because an effective schedule enables a manufacturer to utilise its resources effectively to achieve the desired production objectives. The job shop scheduling problem (JSP) is well known to be one of the most difficult of a class of problems and so itself has been the subject of many research efforts for several decades. The classical JSP attempts to schedule …
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملOptimality of the flexible job shop scheduling system based on Gravitational Search Algorithm
The Flexible Job Shop Scheduling Problem (FJSP) is one of the most general and difficult of all traditional scheduling problems. The Flexible Job Shop Problem (FJSP) is an extension of the classical job shop scheduling problem which allows an operation to be processed by any machine from a given set. The problem is to assign each operation to a machine and to order the operations on the machine...
متن کاملFlow shop scheduling using enhanced differential evolution algorithm
This paper presents a new approach of differential evolution to scheduling optimization problem. The developed approach is viewed as an enhanced varient of differential evolution, incorporation new child correction schemas and coversion schemas from differential to discrete domain. The heuristic is extensively evaluated with the scheduling problem of flow shop and compared with published result...
متن کاملAn effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers
In this paper, an effective hybrid discrete differential evolution (HDDE) algorithm is proposed to minimize the maximum completion time (makespan) for a flow shop scheduling problem with intermediate buffers located between two consecutive machines. Different from traditional differential evolution algorithms, the proposed HDDE algorithm adopted job permutation to represent individuals and appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011